© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

BBA 76212

CALCIUM TRANSPORT BY RABBIT SKELETAL MUSCLE MICROSOMES ("FRAGMENTED SARCOPLASMIC RETICULUM")

ARNOLD M. KATZ* and DORIS I. REPKE

Division of Cardiology, Department of Medicine, Mount Sinai School of Medicine, City University of New York, 100th Street at 5th Avenue, New York, N. Y. 10029 (U.S.A.)

(Received October 2nd, 1972)

SUMMARY

Ca²⁺ binding by skeletal muscle microsomes in 5 mM ATP exhibited saturation kinetics in the range of Ca²⁺ concentrations between 3·10⁻⁸ and 10⁻⁵ M. Approximately 140 nmoles binding sites per mg protein were found. These had a Ca²⁺ binding constant of approximately $4.5 \cdot 10^6$ M⁻¹ with half saturation at $2.2 \cdot 10^{-7}$ M Ca²⁺. In the presence of oxalate, much larger amounts of Ca²⁺ (approx. 6 μ moles/ mg protein) were taken up by the microsomes (Ca²⁺ uptake), but the rate of Ca²⁺ uptake increased linearly with [Ca²⁺] when ionized Ca²⁺ concentrations were below 3·10⁻⁶ M. At Ca²⁺ concentrations above 3·10⁻⁶ M, Ca²⁺ uptake was inhibited. Double reciprocal plots of the Ca²⁺ dependence of the initial rates of Ca²⁺ uptake in the concentration range between $3 \cdot 10^{-7}$ M and 10^{-5} M, unlike those of Ca²⁺ binding, did not demonstrate saturation kinetics, but could be interpreted as representing a non-saturable system with inhibition at higher Ca²⁺ concentrations. In view of these differences, and because Ca2+-binding sites were almost fully saturated at 10⁻⁶ M Ca²⁺, whereas Ca²⁺ uptake rate increased linearly with increasing $[Ca^{2+}]$ to approximately $3 \cdot 10^{-6}$ M, the Ca^{2+} -binding sites are not shown kinetically to participate in oxalate-dependent Ca²⁺ uptake.

INTRODUCTION

A central role for Ca²⁺ in the excitation-contraction coupling of muscle is well established¹⁻⁶. Ca²⁺ initiates contraction when it is bound to troponin, the Ca²⁺ receptor of the contractile proteins, whereas relaxation occurs when Ca²⁺ is removed from troponin. In skeletal muscle this latter process is effected by the sarcoplasmic reticulum, an intracellular membrane network which can remove Ca²⁺ from the high-affinity Ca²⁺-binding site of troponin. Skeletal muscle microsomes, which contain fragmented sarcoplasmic reticulum, can remove Ca²⁺ from solution and cause relaxation of sensitive contractile protein systems *in vitro*. In the presence of Mg²⁺ and ATP, small amounts of Ca²⁺ rapidly become associated with these microsomes by a mechanism designated Ca²⁺ binding. When oxalate, or high concentrations of inorganic phosphate are included, a much greater amount of Ca²⁺

Abbreviation: EGTA, ethyleneglycol-bis- $(\beta$ -aminoethyl ether)-N.N'-tetraacetic acid.

^{*} Philip J. and Harriet L. Goodhart Professor of Medicine (Cardiology).

becomes associated with the microsomes by a slower process designated Ca²⁺ uptake, and calcium oxalate or calcium phosphate precipitates can be demonstrated within the microsomal vesicles⁴. Because Ca²⁺ binding is much more rapid than Ca²⁺ uptake, the binding of Ca²⁺ to a specific transport site might represent an early step in the process that effects Ca²⁺ uptake. Alternatively Ca²⁺ binding and Ca²⁺ uptake could represent two independent mechanisms. To define the relationship between these two *in vitro* processes of Ca²⁺ sequestration, kinetic analyses of the dependence of the amount of Ca²⁺ binding and the rate of Ca²⁺ uptake upon Ca²⁺ concentration were carried out.

METHODS

Microsomes were prepared from rabbit white skeletal muscle by the methods of Harigaya and Schwartz⁷ (H_2O -microsomes) and Katz et al.⁸ (suc-microsomes). Ca^{2+} binding and Ca^{2+} uptake were measured at 25 °C by Millipore filtration^{8,9} of solutions containing 5 mM MgATP, 0.12 M KCl and 40 mM histidine at pH 6.8. The level of ionized Ca^{2+} was adjusted by the use of various concentrations of ethyleneglycol-bis-(β -aminoethyl ether)-N,N'-tetraacetic acid (EGTA) in solutions containing a total ⁴⁵CaCl₂ concentration of 0.025 mM (approx. 0.05 μ Ci/ml in the final reaction mixture). Ionized Ca^{2+} concentrations were calculated by the equations of Katz et al.⁸. Although there remains some disagreement as to the constants for the affinities of ATP and EGTA for Ca^{2+} , this would not influence the kinetic differences noted in this study because the same Ca^{2+} -EGTA buffers were used in both the Ca^{2+} uptake and Ca^{2+} binding studies.

Samples for Ca²⁺ binding (without oxalate) were obtained at 30-s intervals for several minutes after the 45Ca²⁺-EGTA buffer was added. The value for the amount of Ca2+ bound was calculated from the maximal amount of Ca2+ removed from solution by the microsomes. Except at initial Ca²⁺ concentrations below 1.32 · 10⁻⁷ M, binding approached a maximum within 0.5 to 2 min after addition of the Ca²⁺ buffer. At lower initial Ca²⁺ concentrations, this maximum was approximated at 2-4 min. A much slower increase in apparent Ca2+ binding was occasionally seen after the initial rapid phase of binding was completed, due possibly to Ca²⁺ uptake in the presence of P_i liberated from ATP. With other preparations, a slight decrease in Ca²⁺ was seen, however, 2-5 min after addition of the ⁴⁵Ca²⁺-EGTA buffer¹⁰. This "release" phenomenon, when it was seen, occurred sooner at higher Ca2+ concentrations. After repeated studies of these phenomena, it was found that a 4-min sample time gave reasonably accurate values for the peak of the initial rapid phase of Ca²⁺ binding. The maximal error resulting from these poorly understood, but well documented, phenomena were no more than 10% at the higher Ca^{2+} concentrations (>10⁻⁶ M), being much less for almost all other measurements. In all experiments, the amount of Ca²⁺ binding was related to the final ionized Ca²⁺ concentration in the solution, appropriate corrections being made to account for the Ca²⁺ associated with the microsomes.

Calcium uptake was measured with 5-10 μ g microsomal protein per ml in solutions containing 2.5 mM Tris-oxalate. Ca²⁺ uptake rates were calculated from a series of samples filtered at appropriate times after addition of the ⁴⁵Ca²⁺-EGTA buffers. Accurate determinations of Ca²⁺ uptake rates required measurements at

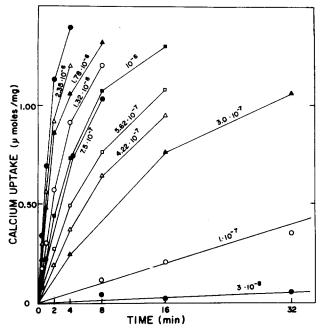


Fig. 1. Time dependence of Ca²⁺ uptake of suc-microsomes at Ca²⁺ concentrations of $3 \cdot 10^{-8}$ M (\bullet), 10^{-7} M (\circ), $3 \cdot 10^{-7}$ M (\wedge), $4 \cdot 22 \cdot 10^{-7}$ M (\wedge), $5 \cdot 62 \cdot 10^{-7}$ M (\circ), $7 \cdot 5 \cdot 10^{-7}$ M (\bullet), 10^{-6} M (\bullet), $1 \cdot 32 \cdot 10^{-6}$ M (\circ), $1 \cdot 78 \cdot 10^{-6}$ M (\wedge), $2 \cdot 35 \cdot 10^{-6}$ M (\wedge), and $3 \cdot 10^{-6}$ M (\bullet). The rate of Ca²⁺ uptake was measured from the initial slope of these curves.

numerous time intervals after the reactions were initiated (Fig. 1). If only a single sample time was used over this range of $[Ca^{2+}]$, misleading results demonstrating an apparent, but not real, fall in the rate of Ca^{2+} uptake at the higher Ca^{2+} concentrations would be obtained because of the widely differing rates of Ca^{2+} uptake. Uptake rates were calculated directly from the initial slopes of these uptake curves. Alternatively, rates could be determined from plots of $\log C(t)/C(0)$ against t, when $C(t)=Ca^{2+}$ concentration at time t, $C(0)=Ca^{2+}$ concentration at zero time. This latter method gave results similar to those obtained by determining the initial tangents to curves such as shown in Fig. 1. The pH was maintained at 6.8 during the course of these experiments by the 40 mM histidine buffer. The possibility that the slowness with which the Ca^{2+} -EGTA complex dissociates could influence the uptake rates determined in this study can be excluded because the rate of Ca^{2+} release from Ca^{2+} -EGTA¹¹ is approximately 100 times faster than measured Ca^{2+} uptake.

Radioactivity was counted in a Packard Tri-Carb Scintillation Counter. The use of $50-\mu$ l samples added to 15 ml Bray's solution prevented significant quenching or precipitation of Ca²⁺ during counting. Lines were computed for kinetic plots by a PDP-8e computer, using the method of least squares.

RESULTS

Initial studies, carried out with microsomes prepared in sucrose by the method of Katz et al.⁸ indicated that at Ca²⁺ concentrations between 10⁻⁷ and 3·10⁻⁶ M.

 Ca^{2+} binding demonstrated saturation kinetics, whereas the rate of Ca^{2+} uptake increased linearly with increasing $[Ca^{2+}]$ (Fig. 2). The data illustrated in Fig. 2 were examined by two systems of graphic analysis, and lines were drawn by the method of least squares with the assumption that the points defined a single straight line. Double-reciprocal plots indicated the presence of approximately 80 nmoles of Ca^{2+} binding sites per mg protein having a Ca^{2+} binding constant of approximately $6 \cdot 10^6 \ M^{-1}$ (Fig. 3). When Ca^{2+} uptake was examined in this manner the extrapolated line went through the origin (Fig. 3), again indicating the absence of a saturable system of Ca^{2+} -transport sites. Scatchard plots of these data also demonstrated saturation kinetics for Ca^{2+} binding, the data in this range of Ca^{2+} concentration approximating a straight line, indicating the existence of a single class of high affinity Ca^{2+} binding sites. In the case of Ca^{2+} uptake, the ratio: uptake

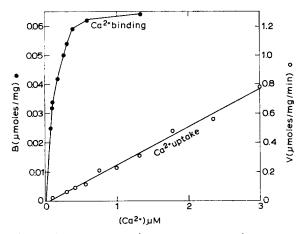


Fig. 2. Direct plot of Ca^{2+} dependence of Ca^{2+} binding, B, (\blacksquare) and the rate of Ca^{2+} uptake, V, (\bigcirc) of suc-microsomes. Experimental methods as described in text. Ca^{2+} binding was measured with 0.2 mg/ml protein, whereas Ca^{2+} uptake was measured with 0.005 mg/ml protein. The same Ca^{2+} buffers were used in both studies.

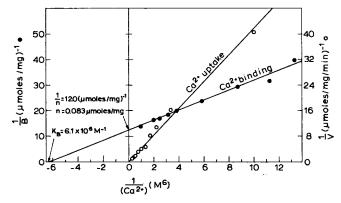


Fig. 3. Double reciprocal plots of Ca^{2+} binding (\bullet) and Ca^{2+} uptake (\circ) of suc-microsomes based on data in Fig. 2. In this experiment, the value for n (number of binding sites per mg protein), was 83 nmoles/mg and K_B , (the affinity constant for Ca^{2+}) was $6.1 \cdot 10^6$ M⁻¹.

rate/free Ca²⁺ concentration was essentially independent of the rate of uptake (Fig. 4).

Because both the maximum Ca²⁺ uptake and the number of Ca²⁺-binding sites of the suc-microsomes were less than those reported by others, these studies were repeated with H₂O-microsomes which were prepared in dilute bicarbonate buffer and washed with KCl⁷. Kinetic studies of these microsomes, which showed maximal Ca²⁺ uptake of approximately 6 µmoles/mg, were entirely similar to those

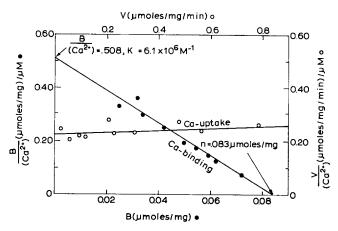


Fig. 4. Scatchard plots of Ca^{2+} binding (\bullet) and Ca^{2+} uptake (\circ) based on data in Fig. 2. The values for n and K_B are the same as those obtained from the double reciprocal plot (Fig. 3).

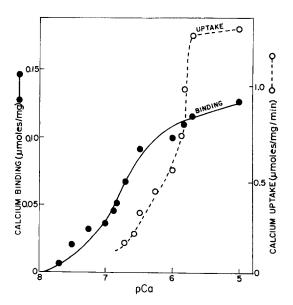


Fig. 5. Semilogarithmic plot of Ca^{2+} uptake and Ca^{2+} binding by H_2O -microsomes. Ca^{2+} uptake was measured with 0.0075 mg/ml protein at Ca^{2+} concentrations between 10^{-7} and $4.22 \cdot 10^{-7}$. A Ca^{2+} concentration >4.22 \cdot 10^{-7} M, 0.005 mg/ml protein was used. Ca^{2+} binding was measured with 0.1 mg/ml protein as described in Methods, samples being taken 4 min after the reaction was started.

described above. The Ca^{2+} dependence of Ca^{2+} -uptake rate was significantly different from that for Ca^{2+} binding (Fig. 5), demonstrating, as in Fig. 2, that Ca^{2+} uptake increased significantly at Ca^{2+} concentrations where Ca^{2+} binding was already 90% saturated. Ca^{2+} binding of the H_2O -microsomes, like that of suc-microsomes, exhibited saturation kinetics (Fig. 6) with approximately 140 nmoles binding sites per mg protein and an affinity constant of approximately $4.5 \cdot 10^6$ M⁻¹. As was found for suc-microsomes, double reciprocal plots of the Ca^{2+} dependence of Ca^{2+} uptake rate did not give positive values for $1/K_m$ when lines were drawn using points obtained at Ca^{2+} concentrations below 10^{-5} M (Fig. 7). Extrapolations in a number of experiments crossed the origin at positive values for $1/K_m$ as often as they did at negative values. The curvature of the actual line from the extrapolated line at the higher Ca^{2+} concentrations reflects inhibition of Ca^{2+} -uptake rate (see Discussion). The

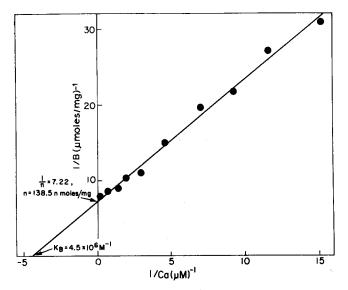


Fig. 6. Double reciprocal plot of Ca²⁺ binding by H₂O-microsomes.

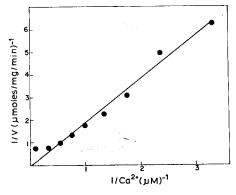


Fig. 7. Double reciprocal plot of Ca^{2+} uptake of H_2O -microsomes. The line was drawn by the method of least mean squares using data obtained at Ca^{2+} concentrations $< 3 \cdot 10^{-6}$ M.

maximal rate of Ca²⁺ uptake, like the total Ca²⁺ uptake, was approximately twice as high for these microsomes when compared to that for microsomes prepared in sucrose.

DISCUSSION

A number of investigators have examined Ca²⁺ binding and Ca²⁺ uptake by skeletal microsomes, but there are few kinetic studies of these processes. Kinetic data have generally been presented as semilogarithmic plots, in which the amount of Ca²⁺ bound or the rate of Ca²⁺ uptake is plotted against the negative logarithm of Ca²⁺ concentration^{4,5,12}. In the case of Ca²⁺ uptake, however, such plots are difficult to interpret, because of well documented inhibitory effects of higher Ca²⁺ concentrations^{4,5,9}. Furthermore, the inference of kinetic interpretations from the semilogarithmic plot is subject to error¹³.

The present value of $4.5 \cdot 10^6$ M⁻¹ for the affinity constant of Ca²⁺ binding by microsomes prepared by the method of Harigaya and Schwartz⁷ corresponds to a Ca²⁺ concentration at half saturation of $2.2 \cdot 10^{-7}$ M. This agrees well with previously reported values of $K_B^{5,12,14}$, as does the finding that Ca²⁺ binding follows saturation kinetics.

The observation that the Ca²⁺ dependence of Ca²⁺ uptake follows different kinetics than Ca2+ binding has not been emphasized previously. However, when the Ca2+ uptake rates at low Ca2+ concentrations reported by Hasselbach4 and Weber et al. are replotted as double reciprocal and Scatchard plots, interpretations similar to those documented in this report are obtained. Although these studies include fewer points than in the present report, double reciprocal plots of the published data defining the Ca2+ dependence of Ca2+ uptake rate tend to go through the origin, and the ratio: uptake rate/[Ca²⁺] does not show a clear decrease as uptake rate increased. Quantitative comparisons of these data with those in the present report is difficult, however, because different values for the Ca²⁺-ATP. Mg²⁺-ATP and Ca²⁺-EGTA binding constants have been used. The data given in Fig. 5 of the present report are quite similar to those in Fig. 16 of the paper by Weber et al.5, whereas Fig. 15 of the paper by Hasselbach⁴ (in which uptake rates are related to mg N rather than mg protein) indicates a shift of the present curve to the left by about 0.5 pCa. This apparent shift, which can be explained by differences in selection of values for the above mentioned binding constants, does not, however, invalidate the general similarities between kinetic analyses of both the present and previously reported data. A low value for $1/K_m$ of Ca^{2+} uptake was published more recently by Worsfold and Peter¹⁵, who found double reciprocal plots to cross the abcissa at slightly negative values for 1/Ca²⁺. Because the inhibitory effect of high Ca2+, noted here as well as by others, causes an upturn of the line drawn in the double reciprocal plot as it approaches the origin, inclusion of such data might give the misleading impression that $-1/Ca^{2+}$ extrapolates to a high value when 1/V=0. If the data at Ca^{2+} concentrations greater than 10^{-5} M in this latter study are excluded, however, double reciprocal plots, like those for Ca²⁺ uptake in Figs 3 and 7, cross at, or very near, the origin.

The present findings do not exclude the possibility that skeletal microsomal Ca^{2+} uptake is a saturable process, either with a very high K_m or with complex

kinetic characteristics, due for example to interacting transport sites. The latter possibility is consistent with the inhibitory effect of high Ca²⁺ concentrations, which clearly demonstrates that these Ca²⁺-membrane interactions include more than one type of effect. This inhibitory action of Ca²⁺, which has been noted by others^{4,5,9}, precludes identification of a saturable process with a high K_m (>10⁻⁵ M). A K_m for Ca²⁺ uptake in the range approximating that for Ca²⁺ binding, approximately $2 \cdot 10^{-7}$ M, can, however, be excluded with a reasonable degree of certainty by these rate data, thus indicating that Ca²⁺ uptake and Ca²⁺ binding follow different kinetics. Furthermore, it is apparent that the Ca²⁺ binding sites become saturated at Ca²⁺ concentrations that are much lower than those at which Ca2+ uptake becomes inhibited (Figs 2 and 5). The kinetic data for Ca2+ uptake reported here are similar to those reported by Carafoli et al.16 for blowfly mitochondrial Ca2+ uptake, which also appears not to exhibit saturation kinetics. The microsomal Ca²⁺ uptake which we have characterized cannot be attributed to the activity of mitochondrial fragments. however, because the microsomal Ca²⁺ uptake measured in these studies is unaffected by oligomycin (4 µg/mg protein) and is inhibited by only about 10% in the presence of 10 mM dinitrophenol. Furthermore mammalian mitochondria, unlike those of the blowfly, appear to take up Ca²⁺ by a saturable process that does not utilize oxalate17.

The present findings indicate that microsomal Ca²⁺ binding is effected by a limited number of high-affinity sites, whereas Ca²⁺ uptake appears to represent a process that does not involve a system of saturable high affinity Ca²⁺-transport sites, a mechanism already proposed to account for the translocation of Ca²⁺ by certain mitochondria. In the latter, it has been proposed that an electrochemical gradient generated by electron transport causes Ca²⁺ to enter mitochondria by means of a simple non-facilitated diffusion process¹⁶. In the case of skeletal microsomes, an analogous electrochemical gradient might be generated by ATP hydrolysis, although the exact relationship between Ca²⁺ uptake and ATPase activity remains in dispute^{4,6,18}. The possibility exists that rapid complexing of Ca²⁺ with oxalate prevents saturation of Ca2+ binding sites in the sequence: Ca2+ binding+translocation \rightarrow Ca²⁺ release within the vesicles \rightarrow complexing of Ca²⁺ with oxalate. This explanation for the lack of saturation kinetics for Ca²⁺ uptake assumes that the rate of Ca²⁺ release and complexing with oxalate is so great as to prevent saturation of the Ca²⁺-binding sites. While such an explanation seems unlikely as the overall rate of Ca²⁺ uptake is much slower than that of Ca²⁺ binding, additional data on the reaction mechanism for Ca²⁺ uptake will be needed to define more precisely the relationship between Ca²⁺ binding and Ca²⁺ uptake. It has recently been shown that treatment with oleic acid or lysolecithin abolishes the ability of microsomes to accumulate Ca2+ (Ca2+ uptake) without altering either ATPase activity or the number and affinity of the Ca2+-binding sites19. These observations agree well with the present findings that demonstrate that Ca²⁺ binding and Ca²⁺ uptake represent two kinetically different processes, as do similar studies with cardiac microsomes²⁰.

ACKNOWLEDGEMENTS

This work was supported by Research Grants HL-13191 from the U.S. Public Health Service and a Grant-in-Aid from the New York Heart Association.

REFERENCES

- 1 Sandow, A. (1965) Pharmacol. Rev. 17, 265
- 2 Weber, A., Herz, R. and Reiss, I. (1963) J. Gen. Physiol. 46, 679
- 3 Katz, A. M. (1970) Physiol. Rev. 50, 63
- 4 Hasselbach, W. (1964) Prog. Biophys. 14, 167
- 5 Weber, A., Herz, R. and Reiss, I. (1966) Biochem. Z., 345, 329
- 6 Ebashi, S. and Endo, M. (1968) Prog. Biophys. Mol. Biol. 18, 123
- 7 Harigaya, S. and Schwartz, A. (1969) Circ. Res. 25, 781
- 8 Katz, A. M., Repke, D. I., Upshaw, J. E. and Polascik, M. A. (1970) Biochim. Biophys. Acta 205, 473
- 9 Martonosi, A. and Feretos, R. (1964) J. Biol. Chem. 239, 648
- 10 Entman, M. L., Bornet, E. P. and Schwartz, A. (1972) J. Mol. Cell. Cardiol. 4, 155
- 11 Hellam, D. C. and Podolsky, R. J. (1969) J. Physiol. London 200, 807
- 12 Carvalho, A. P. and Leo, B. (1967) J. Gen. Physiol. 50, 1327
- 13 Edsall, J. T. and Wyman, J. (1958) Biophysical Chemistry, Chapter 11, Academic Press, New York
- 14 Ogawa, Y. (1970) J. Biochem. Tokyo 67, 667
- 15 Worsfold, M. and Peter, J. B. (1970) J. Biol. Chem. 245, 5545
- 16 Carafoli, E., Hansford, R. G., Sacktor, B. and Lehninger, A. L. (1971) J. Biol. Chem. 246, 964
- 17 Carafoli, E. and Lehninger, A. (1971) Biochem. J. 122, 681
- 18 Seraydarian, K. and Mommaerts, W. F. H. M. (1965) J. Cell Biol. 26, 641
- 19 Fiehn, W. and Migala, A. (1971) Eur. J. Biochem. 20, 245
- 20 Repke, D. I. and Katz, A. M. (1972) J. Mol. Cell. Cardiol. 4, 401